
Control Systems and Reinforcement Learning
ΚΩΔΙΚΟΣ: 1747656
82,99€
Διαθέσιμο με παραγγελία
2€ Σε BOX NOW Locker Τρι 06/05 - Τετ 14/05
Στον χώρο σου Τρι 06/05 - Τετ 14/05 (βάλε ΤΚ)
ΔΩΡΕΑΝ Σε κατάστημα Public
Διαθεσιμότητα ανά κατάστημαΆτοκες δόσεις με ή χωρίς πιστωτική
Από 13.83€/μήνα x 6 άτοκες
Σύνοψη βιβλίου
A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.
Χαρακτηριστικά
Σχετικές κατηγορίες